One-step growth of thin film SnS with large grains using MOCVD

نویسندگان

  • Andrew J Clayton
  • Cecile M E Charbonneau
  • Wing C Tsoi
  • Peter J Siderfin
  • Stuart J C Irvine
چکیده

Thin film tin sulphide (SnS) films were produced with grain sizes greater than 1 μm using a one-step metal organic chemical vapour deposition process. Tin-doped indium oxide (ITO) was used as the substrate, having a similar work function to molybdenum typically used as the back contact, but with potential use of its transparency for bifacial illumination. Tetraethyltin and ditertiarybutylsulphide were used as precursors with process temperatures 430-470 °C to promote film growth with large grains. The film stoichiometry was controlled by varying the precursor partial pressure ratios and characterised with energy dispersive X-ray spectroscopy to optimise the SnS composition. X-ray diffraction and Raman spectroscopy were used to determine the phases that were present in the film and revealed that small amounts of ottemannite Sn2S3 was present when SnS was deposited on to the ITO using optimised growth parameters. Interaction at the SnS/ITO interface to form Sn2S3 was deduced to have resulted for all growth conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and growth of SnS thin film deposited by spray pyrolysis technique

In  this paper  thin  films of  tin sulfide (SnS) were deposited on  the glass substrates using spray pyrolysis method with the substrate temperatures in the range of 400–600℃, keeping the other deposition parameters constant. In  this work  the characteristic of SnS  thin  films  investigated. The XRD pattern and optical transmittance of thin films also are discussed. With the change in concen...

متن کامل

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

Electrical Characterization of Heat-Treated Tin Monosulfide Thin Films

and Introduction: Tin monosulfide (SnS) thin films have generated much interest in recent years due to their potential application as an absorber layer in thin film photovoltaic cells [1]. Thus, the goal of this project was to improve the quality of SnS films through various methods of heat-treatment by means of grain growth, a reduction in bulk defects, and increased carrier mobility, which ca...

متن کامل

Micropatterning of TiO2 Thin Films by MOCVD and Study of Their Growth Tendency

In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited...

متن کامل

Growth Model of MOCVD Polycrystalline ZnO

A growth model for the low pressure chemical vapor deposition (LPCVD) of polycrystalline ZnO thin films is proposed. This model is based on experimental observations of the surfacemorphology and crystallographic orientations of the layers at different thicknesses and growth temperatures. It is shown that the films preferred orientation evolves from c-axis to aaxis as the growth temperature is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018